#include "vm.h" #include "runtime.h" #include "util.h" #define INIT_STACK_CAP 256 typedef struct Stack { Value *mem; size_t len, cap; } Stack; static Stack stack_make(void); static void stack_term(Stack *s); static void stack_fit(Stack *s, size_t idx); static Stack stack_make(void) { Stack s; s.mem = xmalloc(sizeof(Value) * INIT_STACK_CAP); s.cap = INIT_STACK_CAP; s.len = 0; return s; } static void stack_term(Stack *s) { free(s->mem); } static void stack_fit(Stack *s, size_t idx) { size_t size = idx+1; if (size > s->cap) { s->mem = xrealloc(s->mem, sizeof(Value) * (size + (s->cap *= 2))); } } static Value *irparam_to_val(Stack *s, IRParam *v) { if (v->kind == IRParamLiteral) return &v->Literal; else if (v->kind == IRParamAddr) return &s->mem[v->Addr]; else ASSERT_UNREACHED(); } void run(const IRToks *ir, const BuiltinFunc *builtin_funcs) { /* so we don't have to call malloc on every function call */ size_t fn_args_cap = 16; Value *fn_args = xmalloc(sizeof(Value) * fn_args_cap); Stack s = stack_make(); for (size_t i = 0; i < ir->len;) { IRTok *instr = &ir->toks[i]; err_ln = instr->ln; err_col = instr->col; switch (instr->instr) { case IRSet: case IRNeg: case IRNot: stack_fit(&s, instr->Unary.addr); TRY_ELSE(s.mem[instr->Unary.addr] = eval_unary(instr->instr, irparam_to_val(&s, &instr->Unary.val)), {free(fn_args); stack_term(&s);}); break; case IRAddrOf: if (instr->Unary.val.kind != IRParamAddr) { set_err("Unable to take the address of a literal"); return; } Value *v = &s.mem[instr->Unary.val.Addr]; s.mem[instr->Unary.addr] = (Value){ .type = TypePtr, .Ptr = { .type = v->type, .val = &v->Void, }, }; break; case IRAdd: case IRSub: case IRDiv: case IRMul: case IREq: case IRNeq: case IRLt: case IRLe: case IRAnd: case IROr: stack_fit(&s, instr->Binary.addr); TRY_ELSE(s.mem[instr->Binary.addr] = eval_binary(instr->instr, irparam_to_val(&s, &instr->Binary.lhs), irparam_to_val(&s, &instr->Binary.rhs)), {free(fn_args); stack_term(&s);}); break; case IRJmp: i = instr->Jmp.iaddr; continue; case IRJnz: if (is_nonzero(irparam_to_val(&s, &instr->CJmp.condition))) { i = instr->Jmp.iaddr; continue; } break; case IRCallInternal: { const BuiltinFunc *f = &builtin_funcs[instr->CallI.fid]; size_t n_args = instr->CallI.n_args; /* make sure enough space for our arguments is allocated */ if (n_args > fn_args_cap) fn_args = xrealloc(fn_args, sizeof(Value) * (fn_args_cap = n_args)); /* copy arguments into buffer */ for (size_t i = 0; i < n_args; i++) fn_args[i] = *irparam_to_val(&s, &instr->CallI.args[i]); if (f->returns) { stack_fit(&s, instr->CallI.ret_addr); if (f->kind == FuncVarArgs) { size_t min_args = f->VarArgs.min_args; TRY_ELSE(s.mem[instr->CallI.ret_addr] = f->VarArgs.WithRet.func(n_args - min_args, fn_args), {free(fn_args); stack_term(&s);}); } else if (f->kind == FuncFixedArgs) { TRY_ELSE(s.mem[instr->CallI.ret_addr] = f->FixedArgs.WithRet.func(fn_args), {free(fn_args); stack_term(&s);}); } else ASSERT_UNREACHED(); } else { if (f->kind == FuncVarArgs) { size_t min_args = f->VarArgs.min_args; TRY_ELSE(f->VarArgs.NoRet.func(n_args - min_args, fn_args), {free(fn_args); stack_term(&s);}); } else if (f->kind == FuncFixedArgs) { TRY_ELSE(f->FixedArgs.NoRet.func(fn_args), {free(fn_args); stack_term(&s);}); } else ASSERT_UNREACHED(); } break; } default: ASSERT_UNREACHED(); } i++; } stack_term(&s); free(fn_args); }