lang/vm.c

221 lines
5.8 KiB
C

#include "vm.h"
#include "runtime.h"
#include "util.h"
#define INIT_STACK_CAP 128
typedef struct Stack {
Value *mem;
bool *holds_value;
size_t len, cap;
} Stack;
static Stack stack_make(void);
static void stack_term(Stack *s);
static void stack_fit(Stack *s, size_t idx);
static void stack_assign(Stack *s, size_t idx, const Value *v);
static Stack stack_make(void) {
Stack s;
s.mem = xmalloc(sizeof(Value) * INIT_STACK_CAP);
s.holds_value = xmalloc(sizeof(bool) * INIT_STACK_CAP);
s.cap = INIT_STACK_CAP;
s.len = 0;
for (size_t i = 0; i < s.cap; i++)
s.holds_value[i] = false;
return s;
}
static void stack_term(Stack *s) {
/* free any dynamically allocated objects still alive */
for (size_t i = 0; i < s->cap; i++) {
if (s->holds_value[i])
free_value(&s->mem[i], false);
}
/* free the stack memory itself */
free(s->mem);
free(s->holds_value);
}
static void stack_fit(Stack *s, size_t idx) {
size_t size = idx+1;
if (size > s->cap) {
size_t new_cap = size + s->cap * 2;
s->mem = xrealloc(s->mem, sizeof(Value) * new_cap);
s->holds_value = xrealloc(s->holds_value, sizeof(bool) * new_cap);
for (size_t i = s->cap; i < new_cap; i++)
s->holds_value[i] = false;
s->cap = new_cap;
}
}
static Value *irparam_to_val(Stack *s, IRParam *v) {
if (v->kind == IRParamLiteral)
return &v->Literal;
else if (v->kind == IRParamAddr)
return &s->mem[v->Addr];
else
ASSERT_UNREACHED();
}
static void stack_assign(Stack *s, size_t idx, const Value *v) {
stack_fit(s, idx);
if (s->holds_value[idx])
free_value(&s->mem[idx], false); /* free any overwritten heap-allocated values */
s->mem[idx] = *v;
s->holds_value[idx] = true;
}
void run(IRList *ir, const BuiltinFunc *builtin_funcs) {
/* so we don't have to call malloc on every function call */
size_t fn_args_cap = 16;
Value *fn_args = xmalloc(sizeof(Value) * fn_args_cap);
/* so we can use index-based addressing */
irlist_update_index(ir);
Stack s = stack_make();
for (IRItem *i = ir->begin; i;) {
IRTok *instr = &i->tok;
err_ln = instr->ln;
err_col = instr->col;
switch (instr->instr) {
case IRSet:
case IRNeg:
case IRNot: {
Value res;
TRY_ELSE(res = eval_unary(instr->instr, irparam_to_val(&s, &instr->Unary.val)),
{free(fn_args); stack_term(&s);});
stack_assign(&s, instr->Unary.addr, &res);
break;
}
case IRAddrOf: {
if (instr->Unary.val.kind != IRParamAddr) {
set_err("Unable to take the address of a literal");
free(fn_args);
stack_term(&s);
return;
}
Value *v = &s.mem[instr->Unary.val.Addr];
Value res = {
.type = TypePtr,
.Ptr = {
.type = v->type,
.val = &v->Void,
},
};
stack_assign(&s, instr->Unary.addr, &res);
break;
}
case IRAdd:
case IRSub:
case IRDiv:
case IRMul:
case IREq:
case IRNeq:
case IRLt:
case IRLe:
case IRAnd:
case IROr: {
Value res;
TRY_ELSE(res = eval_binary(instr->instr,
irparam_to_val(&s, &instr->Binary.lhs),
irparam_to_val(&s, &instr->Binary.rhs)),
{free(fn_args); stack_term(&s);});
stack_assign(&s, instr->Binary.addr, &res);
break;
}
case IRJmp:
if (instr->Jmp.iaddr < ir->len)
i = ir->index[instr->Jmp.iaddr];
else
i = NULL;
continue;
case IRJnz:
if (is_nonzero(irparam_to_val(&s, &instr->CJmp.condition))) {
if (instr->Jmp.iaddr < ir->len)
i = ir->index[instr->CJmp.iaddr];
else
i = NULL;
continue;
}
break;
case IRCallInternal: {
const BuiltinFunc *f = &builtin_funcs[instr->CallI.fid];
size_t n_args = instr->CallI.n_args;
/* make sure enough space for our arguments is allocated */
if (n_args > fn_args_cap)
fn_args = xrealloc(fn_args, sizeof(Value) * (fn_args_cap = n_args));
/* copy arguments into buffer */
for (size_t i = 0; i < n_args; i++)
fn_args[i] = *irparam_to_val(&s, &instr->CallI.args[i]);
if (f->returns) {
Value res;
if (f->kind == FuncVarArgs) {
size_t min_args = f->VarArgs.min_args;
TRY_ELSE(res = f->VarArgs.WithRet.func(n_args - min_args, fn_args),
{free(fn_args); stack_term(&s);});
} else if (f->kind == FuncFixedArgs) {
TRY_ELSE(res = f->FixedArgs.WithRet.func(fn_args),
{free(fn_args); stack_term(&s);});
} else
ASSERT_UNREACHED();
stack_assign(&s, instr->CallI.ret_addr, &res);
} else {
if (f->kind == FuncVarArgs) {
size_t min_args = f->VarArgs.min_args;
TRY_ELSE(f->VarArgs.NoRet.func(n_args - min_args, fn_args),
{free(fn_args); stack_term(&s);});
} else if (f->kind == FuncFixedArgs) {
TRY_ELSE(f->FixedArgs.NoRet.func(fn_args),
{free(fn_args); stack_term(&s);});
} else
ASSERT_UNREACHED();
}
break;
}
case IRArrMake: {
size_t arr_len = instr->ArrMake.len, arr_cap = instr->ArrMake.cap;
Value arr = {
.type = TypeArr,
.Arr = {
.type = TypeVoid,
.is_string = false,
.dynamically_allocated = true,
.vals = NULL,
.len = arr_len,
.cap = arr_len ? arr_cap : 0,
},
};
if (arr_len) {
Type arr_ty = irparam_to_val(&s, &instr->ArrMake.vals[0])->type;
void *arr_vals = xmalloc(type_size[arr_ty] * arr_cap);
for (size_t j = 0; j < arr_len; j++) {
Value *v = irparam_to_val(&s, &instr->ArrMake.vals[j]);
if (v->type != arr_ty) {
set_err("Type of array item %zu (%s) differs from array type (%s)", j, type_str[v->type], type_str[arr_ty]);
free(arr_vals);
free(fn_args);
stack_term(&s);
return;
}
memcpy((uint8_t*)arr_vals + type_size[arr_ty] * j, &v->Void, type_size[arr_ty]);
}
arr.Arr.type = arr_ty;
arr.Arr.vals = arr_vals;
}
stack_assign(&s, instr->ArrMake.arr_addr, &arr);
break;
}
default:
ASSERT_UNREACHED();
}
i = i->next;
}
stack_term(&s);
free(fn_args);
}